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Statistical Error Propagation
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The simple but often neglected equation for the propagation of statistical errors in functions of correlated
variables is tested on a number of linear and nonlinear functions of parameters from linear and nonlinear
least-squares (LS) fits, through Monte Carlo calculations dr-40 10° equivalent data sets. The test examples
include polynomial and exponential representations and a band analysis model. For linear functions of linear
LS parameters, the error propagation equation is exact. Nonlinear parameters and functions yield nonnormal
distributions, but their dispersion is still well predicted by the propagation-of-error equation. Often the error
computation can be bypassed by a redefinition of the least-squares model to include the quantity of interest
as an adjustable parameter, in which case its variance is returned directly in the variance-covariance matrix.
This approach is shown formally to be equivalent to the error propagation method.

Introduction uted, with variances (the diagonal element¥pknown exactly

—3,7
Perhaps one of the “best-kept secrets” in experimental at the outset:

physical science is the simple matrix expression for error .
propagatiofi 3 V=A 3)

o?=g"Vg 1) whereA is the matrix of the normal equations. Accordingly,
linear functions of such parameters are unbiased and normal,
in which o represents the variance in some functiaf a set with variancess known exactly. On the other hand, nonlinear

of parameterg, whose variance-covariance matrix\is with parameters and nonlinear functions of linear parameters are not
the ith element in the vectog being df/95;. To be sure, normally distributed and in fact are usually biagedeverthe-
undergraduate chemistry and physics students are drilled in theless, for the cases examined here, this nonnormality seldom
form of this equation that applies famcorrelatedvariables: translates into a serious deficiency in the predictions of eq 1
5 and its “normal” interpretation for establishing confidence limits.
2_ o 2 2 Indeed, the 10% “rule of thumb” suggested for nonlinear LS
Or = z oy 2 2) ; i
" parametersseems also to apply to functions of such param

eters: If the relative standard erroyf is <1/10, confidence

which is obtained from eq 1 by dropping the off-diagonal terms limits based on eq 1 should also be reliable to within 10%. How-
(the covariances) iv. However, in very many applications of ~ €Ver, in several of the cases examined here, asymmetry in the
interest, the parametgBsthemselves result from a least-squares distributions is more severe than in the examples studied in
analysis, and in general their covariances are not negligible. ref 7.
Accordingly, estimates based on eq 2 can be grossly in error. It is not surprising that functions of LS parameters behave
While this inadequacy has been recognized, the correct eq lin a fashion similar to the parameters themselves, because often
still appears to be underutilized. This may be because thisit is possible to bypass eq 1 in the calculation of the propagated
equation does not feature very prominently (if at all) in the data error for a particulaf, by redefining the fit to includé among
analysis reference sources most physical scientist$@se. the adjustable parameters. Then its variance is returned directly
Another pos&blg reason for the neglect of eq 1 is the Sensepy the LS fit. As is shown below, this approach is formally
that error propagation |s.“only apprpmmate". The present Wprk equivalent to the use of eq 1, a point which has also been
was undertaken to examine that notion. Monte Carlo calculations, g ifieq computationally.

involving at least 16equivalent data sets are used to compare e . .
“experiment” with the predictions of eq 1 in a number of prob- For spe'cmc |IIustrat|qn of some of these points, suppose that
lems of interest, involving linear and nonlinear functions of data are fitted to a straight ling,= a + bx and that the usual

parameters that themselves result from both linear and nonlinea/2SSUmptions for the data apply, namely that the model is correct
least-squares (LS) fits. The computations employ methods like 21d the data have random, normally distributed errgranly.
those used recently to investigate the distributional properties Then the LS estimates af andb are unbiased and normally

of LS parameters from nonlinear fitand from linear fits to distributed about the true values, with standard errors that are
transformed (nonnormal) datawith the usual assumptions of exactly predictable if the error structure of the data is known:
normal, unbiased data having an a priori known error structure, 92> = Vi1 = A ' and oy = V22 Now consider the three

eq 1 is rigorous in application to linear functions of linear LS functionsf, = a + bx (the fit function itself),f, = a + b, and
parameters. Such parameters are themselves normally distribfs = b/a. The row matrices of eq 1 for these three casesjare

= (1,X), (1,£1), and b/a?, 1/a), respectively. The propagated
TFAX: 615-343-1234. E-mail: tellinjp@ctrvax.vanderbilt.edu. variances irf; andf, are
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0.2= 02+ o5 + 20, (4a) related. For this purpose note that, while the ma#xiis still

: given by A = 0,72XTX, the elements oK are now partial
derivatives of the fit functior with respect to the parameters,
namely X; = (0Fi/9f;); these are evaluated a using the
converged values of the parametgr Thus, in this fitVg =
which differ from the predictions of eq 2 by the inclusion of ¢,2(X™X)"1. Now suppose that the fit is carried out for an
the terms in the covariances,? = V12 = V1. Thus eq 2 yields alternatively defined set of parametersThe newV is V, =
correct results only whek1, = 0, which it does in this case  ¢,2(YTY)™%, with the elements of defined analogouslyy; =
whenx = 0 (or ywix; = 0 for unequally weighted data). Since  (dFi/dy;). However, the partial derivatives with respect to one
f; andf; are linear functions gf, eq 1 is exact anfl andf, are set of variables can be related to those with respect to the other
both normally distributed. For the relative erroifineq 1 yields by, for example

Ofaz_ 0a2 sz 2051b2 ﬁ — 2 ﬁ %
SREEC R BRI e

which again differs from the predictions of eq 2 by the inclusion Where the sum runs over tipeadjustable parameters. Thus the
of the last term. Sincé& is not a linear function o, f is not matrix X can be related to' by

normally distributed and eq 4c is not rigorous. A fit of the same X=YU @)
data toy = a + aBxwill yield results for B (=b/a) and its

variance (e.g.ge” = V) that are identical with those obtained  where the Jacobi matriid is p x p, with elementdJ; = (dyi/
via the error propagation approach of eq 1. This fitis a nonlinear 9;). Accordingly

fit to a straight line. Similarly, the linear fit can be redefined to

yield f; andf, directly. For example a fit ty = A + b(x — 1) V,=UV, u’ (8)
will yield directly A (=a + b) and its error.

afzz =02+ 0"+ 20,7 (4b)

and eq 1 can again be seen to give ithediagonal element of
Theoretical Background V,, with g™ being theith row of U andg theith column ofUT.
Equations 5 and 8 apply not just to different sets of parameters
fined in terms of each other alone, but also to functions which
include a dependence on the independent variable, e.g., the fit
function itself atxp or its derivative. However, in such cases it
g usually more efficient to use eq 1, because the direct fitting
approach requires repeating the fit at different selected values
of the independent variable, as is illustrated below. Equation 1
is also preferred in cases where the relation between the derived
property and the originally fitted parameters is complex, as in
the computation of RKR potential curves for diatomic mol-
ecules'®

There is no special connection between the occurrence Ofde
correlation among the LS parameters and the error structure in
the data, so for simplicity most of the present tests have involved
unweighted least squares and hence the assumption of consta
error in the data. As in the previous studiésall error is
assumed to reside in the response varigble

In unweighted linear LS, the matriX is given in terms of
the design matriX by A = 0,72XTX, whereg,? is the (constant)
variance iny. This is a special case of weighted LS, whére
= XTWX, with W being diagonal and having elements=
Wi = a2 Since the elements ok depend only on the
independent variabbe V is known exactly once the model and  computational Methods
the x-structure and error structure of the data are established,
as already noted. A corresponding relation holds Aorin
nonlinear LS, except that the elements of the makixan
depend on the parametgfsand the response variabje(see

The partial derivatives required in eq 1 are evaluated
numerically. For accuracy, these are estimated centrally, e.g.,
for three parameterg{ = a, etc.)

below). However, an “exactV can be defined here too, by af(x:a,b,c) f(xa+ Aa/2b,c) — f(xa — Aa/2,b,c)
simply employing exactly fitting data and the true parameter ( — )%( ' — ’ — ) 9)
values’ %a Aa

The rigorous validity of eq 1 for functionthat are linear  |n double precision arithmetida is usually set to 166107
functions of linear LS parameters follows from the linear g This numerical approach makes the use of eq 1 straightfor-
transformation properties of such quantitids. particular, ife ward even in cases where the derivatives cannot be expressed

represents a set of quantities related to the linear LS parametergasily in closed form, e.g., in the aforementioned case of RKR
B by the linear transformatioa = L, then the values of the  potential curve calculations.

o are the same as would be obtained by directly fitting the data  The Monte Carlo (MC) calculations employed routines like
to a; the corresponding variance-covariance matrix is given those described in the earlier worl&For the error propagation

in terms of that foig by tests, the targeted quantitiewere calculated using the results
of each MC fit and then were binned and statistically evaluated
Ve =LV LT (5) along with the fit parameters.
The investigated models include (1) polynomial representa-
Equation 1 thus yields a selected diagonal elemeit,afor tions, linear through cubic, (2) an exponentially limiting function

f = o, with g™ being theith row of L andg theith column of of form a + b(1 — e %) (which is a special case of an
LT. Further, since the LS fits are linear, with normally distributed exponential plus a background), and (3) a spectral band
error in the data, both sets of paramet@randa, are normally resolution model involving two Gaussian bands nearly coinci-
distributed. Equation 5 holds also for two sets of nonlinear LS dent in wavelength. Model 1 is linear, so the parameters and
parameters that are related through a linear transformétion; linear functions thereof are rigorously normal, as already noted.
however, in this case the parameters are not normally distributed.These cases were used to validate the computational methods.
A result analogous to eq 5 can also be obtained for two The second model is linear if the constarns fixed, nonlinear

different sets of nonlinear LS parameters that are not linearly otherwise. The third is nonlinear unless the peak positions and
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widths are fixed. Functions of the parameters that involve T T T T T
products and ratios are nonlinear and yield nonnormal distribu- 25000
tions for both linear and nonlinear LS parameters. In this

category are useful quantities such as the areas under the two 20000 |
bands or the band area ratios and fractions in model 3.

To further illustrate how error propagation can be bypassed
by redefining the fit parameters, suppose that data are fitted to
a cubic polynomialy = bg + byx + box? + bsx8, and that the Count
functionf is the fit function itself. Hergy™ = (1,x,x2,x%), andos 10000
at anyx = Xg is readily obtained by numerical evaluation of
the matrix product in eq 1. Alternatively, an equivalent fit can
be obtained using the argument (X — Xg). If the fit relation
is defined asy = ¢y + ¢z + 742 + ¢328/6, the fit yields
directly the values and errors for the fit function and all its 0 4 % 0 > 4
derivatives at. This recentering method can also be used on X

many nonlinear rnodels,. 'nC_IUd'n_g model 2 above. . Figure 1. Histogrammed results of 10onte Carlo estimates of the
All of the LS fits studied in this work can be done with &  product and ratios of the first two parameters (the constant and linear
number of microcomputer data analysis programs; | have usedcoefficients), as obtained from linear LS fits to the cubic model

the KaleidaGraph program (Synergy SoftwafeSuch programs  described in text. The binning argumeXtin this and subsequent
do not normally include provision for evaluating eq 1, so the histogram plots isf(— fiue)/or. The error in the fitted data is, = 0.5;
user must either write a short macro for this calculation or be the predicted relative errors((f) are 1.02 (product) and 1.45 (ratios).
able to define the desired quantity as a parameter in the fit. _(The_ statistical errors in '_[he counts are smaller than the plotted points
Still, the latter approach works in many cases that might not in this and subsequent figures.)

seem amenable to it at first thought. For example, the individual
band intensities, band areas, and band-area ratios in model
can be handled this way, as is discussed below.

15000

T

T

5000

oted, this model becomes linear whers fixed, whereupon
inear functions of andb follow eq 1 rigorously. That includes
the fit function itself, as was readily verified through the MC

. . calculations.
Results and Discussion . . .
Interestingly, whert is included as an adjustable parameter,
Linear Models. the most nonnormal parameter s and it is much more

As already noted, linear LS models yield particularly simple nonnormal that the fit function itself, as is illustrated in Figure
results and thus provide useful tests on the computational3. The asymmetry in the distribution df is even more

procedures. The cubic model used in a recent studias surprising, given that its relative standard error is only 4.3%
employed in these preliminary checks. It had eight data values here. Its MC sampled error is 10% larger than predicted, in mild
atx=1, 2, ..., 8 generated 3s= 1 + 5x + 0.01x%2 — 0.025¢. violation of the “10% rule of thumb” stated earlier. The
In all checks the four fit parameters and the functié@s and discrepancy drops to 2.4% whepis reduced by a factor of 2,

f'(x) were normally distributed, with variances as predicted. indicating that the parametbiis exhibiting divergent sampling
Interestingly, these predictions of linear LS apply even for statistics’

fits to the wrong model. This statement holds not just for Band Analysis Model.

“slightly” wrong models, such as omitting the statistically ill- The model of two nearly coincident Gaussian bands is

defined quadratic coefficient in the present cubic example, but illustrated in Figure 4, with results summarized in Table 1. The

also for drastically wrong models, including fitting the cubic model was intentionally construed to yield large uncertainty in

data to a straight line. In all cases the parameters and derivedthe component bands, even though the total is precise to within

functions are distributed as predicted for the respective fits. This the width of the plotted curves. Calculations were done for two

result is at odds with naive anticipation. Of cougddor wrong- error structures: constant and proportional error. (These two
model fits is systematically too large, being augmented by a mark the usual extremes in physical measurements.)
variance term for the model errbin the case of the straight- For both error structures the parameter distributions deviated

line fit of the present cubic data, the increase amounts to 49%, only modestly from normal, with one exception: The centroid
which is determined from a fit of the error-free data to a straight of the stronger component showed pronounced asymmetry, even
line. though its inherent imprecision is small (see Figure 5). All
Figure 1 illustrates distributions for products and ratios of parameters displayed biases that were statistically significant
the first two parameters in the cubic model. All of these are far from the standpoint of the MC determinations, in both weighting
from normal but become closer to normalegss reduced from schemes. These still amounted to at mesi0% of the
0.5 to 0.1, as shown in Figure 2. The most anomalous dis- corresponding exact standard errors, so they would not be of
tribution is that associated with = by/bo, which exhibits great practical import in an actual analysis. On the other hand,
“reciprocal statistics,*8indications of which persist even when  the biases scale withy? while the parameter errors scale with
oy is reduced by the factor of 5. The reason this behavior is so ¢,,” so a tripling of the data error would make the biases a more
much more pronounced fdw/bo than for its reciprocal is that  significant 30% of the parameter errors. In this regard the smaller
the relative error ibp (01/f1) is much larger-1.23 vs 0.223  biases for the weighted model in Table 1 are misleading: if
for by. Since the standard errors in the parameters scale withthe data error is scaled to make each parameter error equal to
oy, both ratios drop by a factor of 5 ag is decreased from 0.5  that in the unweighted analysis, the biases in the proportional-

to 0.1. error model exceed those in the constant-error model for four
A Nonlinear Example: Exponentials. of the six parameters.
A useful function for data that have a nonzero large- Among the examined properties from the analysis were the

asymptotic limit is the fornry = a + b(1 — e ). As already component band strengths at selecteglues, the band areas,
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TABLE 1: Comparison of “Exact” and Monte Carlo Results for Band Analysis Model

biases and standard errbrs

unweighted weighted

parameter value bias Oexact owmc' biag Oexact omc'
1 () 300 51 66.35 65.5 3.8 39.32 40.0
2 (Axq) 75 —0.089 1.7008 1.698 —0.013 1.3127 1.306
3 (Xo,2) 520 0.018 0.4886 0.486 0.007 0.4689 0.469
4 (ap) 500 —-5.1 66.41 65.6 —-3.8 39.87 40.6
5 (Ax2) 90 0.126 1.0112 1.057 0.060 0.5104 0.534
6 (%02 515 —0.058 0.4067 0.432 —0.021 0.1754 0.183
y1(440) 12.80 0.71 5.120 5.22 0.46 3.517 3.67
ratio’ 2.000 0.113 0.7308 0.774 0.021 0.4447 0.443

aTwo Gaussian bandsz(x) = a exp[—4 In 2((x — Xo)/AX)?]. Last two rows give derived quantities and their propagated ertdrsc 10* spectra
employed in Monte Carlo calculationso, = 1.0.9 0, = y/100 andw; = o0y 2, evaluated using the true rather than the randomyzetdBljic —
Buue errors= oyc/200." Relative precision of MGr values= (2N)~*2 = 0.0035.9 (Band 2 area)/(band 1 area).

12000 I T T i 800 _I T T T T B
L o f=bgxby | 700 | -
(o -
8000 |- =by /by [ i
------ Gaussian ‘5 500 -
Count | - pcg 400 b i
- 300} -
4000 |- . 200 L i
L _ 100 |- -
¢ 0 L 1
0 booosetl 400 450 500 550 600
-4 -2 0 2 4 6 nm
X Figure 4. Band analysis model, showing component bands and their
Figure 2. Results obtained as in Figure 1, but with the data error errors (b), as calculated using eq 1 for the case of constant esgor (
reduced by a factor of 5, toy = 0.1. A unit-variance Gaussian is = 1.0). Points were generated fron= 400 tox = 630 at intervals of
included for comparison. 2.0.
T T ;I T T T T I 1 I I 1 I 1
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Figure 3. Results of 18 Monte Carlo estimates of the parameker Figure 5. Results (histogram counts) ofsd 10* Monte Carlo estimates
and the fit functionf = a + b(1 — ™) evaluated ak, = 8.5. The of the centroids for the weak (open points) and strong component bands
model had true values of 1, 35, and 0.2 &b, andc, respectively, in the constant-error model. Similar results were obtained for the

with eight points ak = 1, 2, ..., 8 ands, = 0.5. The “exact” standard ~ proportional-error model.

errors forb andf(xo) are 1.488 and 0.451, respectively. Despite the . . . )

good visual agreement between the solid points and the Gaussian curvein this quantity. For comparison, the errors predicted by eq 2

the weighted fit of these data fails a chi-square tg3t 90.2 for 28 are 30% too small in both cases.

degrees of freedom). Al of the errors in derived properties obtained here via eq 1
_ _ o can just as well be obtained directly from the fit through a

band-area ratios, and fractional band area. Not surprisingly, all redefinition of the fit parameters. For example, if a component

of these displayed bias and nonnormality on a scale comparablehand is defined as

to that exhibited by the fit parameters themselves. Figure 6

shows that in the wings of the spectrum the two components  y(x) = Aexp{4 In 2(Ax)‘2[(xl — Xo)2 —(x— XO)Z]} (10)

are quite nonnormal, with the skewness of the distributions

reflecting the anticorrelation of the components, needed to the fit yields directly the amplitudd of the band ak = x; and

preserve the precise total. Nonetheless, the sampled standarits error. Thus one can generate complete error bands on the

errors are within 2% of predictions and the biases are moderatecomponents, as shown in Figure 4, by varykagystematically

(see Table 1). and rerunning the fit. Similarly, since the band-area r&
Figure 7 displays results for the ratio of band areas. In this (a;AXx)/(auAxy), reexpressing the amplitude parameter for the

case the distributions for the two error structures are quite stronger band aR(a;Ax;)/Ax, will yield directly Rand its error.

different, with both the asymmetry and bias being much smaller  Applications.

for proportional error. Still, the MC standard errors are close to  Linear fitting is widely used in the construction of calibration

the predicted values (Table 1), despite the large relative error curved? and in the empirical representation of data as functions
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Figure 6. Histogram counts for the two component bands &t440,
identified as in Figure 5. The predicted values are 12281 and 72.9

+ 5.1. Again, similar results were obtained for the proportional-error
model.
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Figure 7. Count distribution for the strong:weak band area ratio in
the constant-error (open points) and proportional-error models.
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yieldsK asB/A and therefore requires eq 1 for proper assessment
of the error inK. Fits to egs 11 and 12 will not yield identical
values ofK, because the data inversion process in eq 12 leads
to biased estimatésHowever, if this data bias is neglected (e.g.,
for error-free data), the (nonlinear) first form of eq 12 yields a
K identical with that obtained frorB/A, and also yields directly

a correct value obx.

Conclusion

Least-squares parameters are normally correlated, and in the
calculation of statistical errors in functions of the parameters,
this correlation must be taken into account. This is easily done
using the underutilized matrix expression of eq 1. In many cases
the same can be accomplished through a judicious definition
of the adjustable parameters in the least-squares model itself.
Monte Carlo calculations verify the expected normal distribu-
tions in linear functions of normal parameters but demonstrate
pronounced nonnormality in some nonlinear functions of the
parameters.

Even though nonlinear parameters and nonlinear functions
of linear parameters are not normally distributed, many cases
in practice are likely to fall under the validity of the 10% “rule
of thumb”? if the parameter or derived property has a standard
error less than 10% of its magnitude, its directly estimated error
(from V) or its propagated error (from eq 1) should prove
reliable for estimating confidence limits within 10%. In this
regard it should be noted that, in many cases, the data error is
not known at the outset and must be assessed from the fit itself.
This leads to a relative uncertainty ofij222 in the estimates
of the parameter standard errors, wherés the number of

of their independent variable, e.g., thermochemical and kinetics degrees of freedom in the fit. This uncertainty will often match

data as functions of the temperatufe and spectroscopic

properties as functions of vibrational and rotational quantum
numbers. Sometimes it is the first derivative that is sought, for
example in the extraction of partial molar quantities for

or exceed the errors in confidence limits stemming from the
Gaussian interpretation of non-Gaussian distributions.

Of course there is no way that the variance-covariance matrix
or eq 1 can convey any information about the extent of

solutions, orAH from the T-dependence of equilibrium constants ~ deviations from normality in the distributions, so for cases where
or vapor pressures. Equation 1 is required for the proper these are of interest, the Monte Carlo method will remain
computation of errors in these cases, but often it can be avoidedindispensable, as it will also for the assessment of bias.

by the recentering approach, or by some other redefinition of
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_ aKx
Y= T+ kx

11)

whereK is the binding constang the prepared concentration
of ligand, anda a scaling parameter. A nonlinear fit to eq 11
will yield directly K and its error, whereas a linear fit to the
relation

= A+ Bx (12)
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