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The simple but often neglected equation for the propagation of statistical errors in functions of correlated
variables is tested on a number of linear and nonlinear functions of parameters from linear and nonlinear
least-squares (LS) fits, through Monte Carlo calculations on 104-4 × 105 equivalent data sets. The test examples
include polynomial and exponential representations and a band analysis model. For linear functions of linear
LS parameters, the error propagation equation is exact. Nonlinear parameters and functions yield nonnormal
distributions, but their dispersion is still well predicted by the propagation-of-error equation. Often the error
computation can be bypassed by a redefinition of the least-squares model to include the quantity of interest
as an adjustable parameter, in which case its variance is returned directly in the variance-covariance matrix.
This approach is shown formally to be equivalent to the error propagation method.

Introduction

Perhaps one of the “best-kept secrets” in experimental
physical science is the simple matrix expression for error
propagation1-3

in which σf
2 represents the variance in some functionf of a set

of parametersâ, whose variance-covariance matrix isV, with
the ith element in the vectorg being ∂f/∂âi. To be sure,
undergraduate chemistry and physics students are drilled in the
form of this equation that applies foruncorrelatedvariables:

which is obtained from eq 1 by dropping the off-diagonal terms
(the covariances) inV. However, in very many applications of
interest, the parametersâ themselves result from a least-squares
analysis, and in general their covariances are not negligible.
Accordingly, estimates based on eq 2 can be grossly in error.
While this inadequacy has been recognized, the correct eq 1
still appears to be underutilized. This may be because this
equation does not feature very prominently (if at all) in the data
analysis reference sources most physical scientists use.4-6

Another possible reason for the neglect of eq 1 is the sense
that error propagation is “only approximate”. The present work
was undertaken to examine that notion. Monte Carlo calculations
involving at least 104 equivalent data sets are used to compare
“experiment” with the predictions of eq 1 in a number of prob-
lems of interest, involving linear and nonlinear functions of
parameters that themselves result from both linear and nonlinear
least-squares (LS) fits. The computations employ methods like
those used recently to investigate the distributional properties
of LS parameters from nonlinear fits7 and from linear fits to
transformed (nonnormal) data.8 With the usual assumptions of
normal, unbiased data having an a priori known error structure,
eq 1 is rigorous in application to linear functions of linear LS
parameters. Such parameters are themselves normally distrib-

uted, with variances (the diagonal elements ofV) known exactly
at the outset:1-3,7

whereA is the matrix of the normal equations. Accordingly,
linear functions of such parameters are unbiased and normal,
with variancesσf

2 known exactly. On the other hand, nonlinear
parameters and nonlinear functions of linear parameters are not
normally distributed and in fact are usually biased.7 Neverthe-
less, for the cases examined here, this nonnormality seldom
translates into a serious deficiency in the predictions of eq 1
and its “normal” interpretation for establishing confidence limits.
Indeed, the 10% “rule of thumb” suggested for nonlinear LS
parameters7 seems also to apply to functions of such param-
eters: If the relative standard errorσf/f is <1/10, confidence
limits based on eq 1 should also be reliable to within 10%. How-
ever, in several of the cases examined here, asymmetry in the
distributions is more severe than in the examples studied in
ref 7.

It is not surprising that functions of LS parameters behave
in a fashion similar to the parameters themselves, because often
it is possible to bypass eq 1 in the calculation of the propagated
error for a particularf, by redefining the fit to includef among
the adjustable parameters. Then its variance is returned directly
by the LS fit. As is shown below, this approach is formally
equivalent to the use of eq 1, a point which has also been
verified computationally.

For specific illustration of some of these points, suppose that
data are fitted to a straight line,y ) a + bx, and that the usual
assumptions for the data apply, namely that the model is correct
and the data have random, normally distributed error iny only.
Then the LS estimates ofa andb are unbiased and normally
distributed about the true values, with standard errors that are
exactly predictable if the error structure of the data is known:
σa

2 ) V11 ) A11
-1 and σb

2 ) V22. Now consider the three
functionsf1 ) a + bx (the fit function itself),f2 ) a ( b, and
f3 ) b/a. The row matrices of eq 1 for these three cases aregT

) (1, x), (1,(1), and (-b/a2, 1/a), respectively. The propagated
variances inf1 and f2 are† FAX: 615-343-1234. E-mail: tellinjb@ctrvax.vanderbilt.edu.
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which differ from the predictions of eq 2 by the inclusion of
the terms in the covariance,σab

2 ) V12 ) V21. Thus eq 2 yields
correct results only whenV12 ) 0, which it does in this case
whenxj ) 0 (or ∑wixi ) 0 for unequally weighted data). Since
f1 andf2 are linear functions ofâ, eq 1 is exact andf1 andf2 are
both normally distributed. For the relative error inf3, eq 1 yields

which again differs from the predictions of eq 2 by the inclusion
of the last term. Sincef3 is not a linear function ofâ, f3 is not
normally distributed and eq 4c is not rigorous. A fit of the same
data toy ) a + aBx will yield results for B ()b/a) and its
variance (e.g.,σB

2 ) V22) that are identical with those obtained
via the error propagation approach of eq 1. This fit is a nonlinear
fit to a straight line. Similarly, the linear fit can be redefined to
yield f1 andf2 directly. For example a fit toy ) A + b(x - 1)
will yield directly A ()a + b) and its error.

Theoretical Background

There is no special connection between the occurrence of
correlation among the LS parameters and the error structure in
the data, so for simplicity most of the present tests have involved
unweighted least squares and hence the assumption of constant
error in the data. As in the previous studies,7,8 all error is
assumed to reside in the response variabley.

In unweighted linear LS, the matrixA is given in terms of
the design matrixX by A ) σy

-2XTX, whereσy
2 is the (constant)

variance iny. This is a special case of weighted LS, whereA
) XTWX , with W being diagonal and having elementswi )
Wii ) σyi

-2. Since the elements ofX depend only on the
independent variablex, V is known exactly once the model and
the x-structure and error structure of the data are established,
as already noted. A corresponding relation holds forA in
nonlinear LS, except that the elements of the matrixX can
depend on the parametersâ and the response variabley (see
below). However, an “exact”V can be defined here too, by
simply employing exactly fitting data and the true parameter
values.7

The rigorous validity of eq 1 for functionsf that are linear
functions of linear LS parameters follows from the linear
transformation properties of such quantities.9 In particular, ifr
represents a set of quantities related to the linear LS parameters
â by the linear transformationr ) Lâ, then the values of the
r are the same as would be obtained by directly fitting the data
to r; the corresponding variance-covariance matrix is given
in terms of that forâ by

Equation 1 thus yields a selected diagonal element ofVr for
f ) Ri, with gT being theith row of L andg the ith column of
LT. Further, since the LS fits are linear, with normally distributed
error in the data, both sets of parameters,â andr, are normally
distributed. Equation 5 holds also for two sets of nonlinear LS
parameters that are related through a linear transformation;9

however, in this case the parameters are not normally distributed.
A result analogous to eq 5 can also be obtained for two

different sets of nonlinear LS parameters that are not linearly

related. For this purpose note that, while the matrixA is still
given by A ) σy

-2XTX, the elements ofX are now partial
derivatives of the fit functionF with respect to the parameters,
namely Xij ) (∂Fi/∂âj); these are evaluated atxi using the
converged values of the parametersâ.7 Thus, in this fitVâ )
σy

2(XTX)-1. Now suppose that the fit is carried out for an
alternatively defined set of parametersγ. The newV is Vγ )
σy

2(YTY)-1, with the elements ofY defined analogously,Yij )
(∂Fi/∂γj). However, the partial derivatives with respect to one
set of variables can be related to those with respect to the other
by, for example

where the sum runs over thep adjustable parameters. Thus the
matrix X can be related toY by

where the Jacobi matrixU is p × p, with elementsUij ) (∂γi/
∂âj). Accordingly

and eq 1 can again be seen to give theith diagonal element of
Vγ, with gT being theith row of U andg the ith column ofUT.

Equations 5 and 8 apply not just to different sets of parameters
defined in terms of each other alone, but also to functions which
include a dependence on the independent variable, e.g., the fit
function itself atx0 or its derivative. However, in such cases it
is usually more efficient to use eq 1, because the direct fitting
approach requires repeating the fit at different selected values
of the independent variable, as is illustrated below. Equation 1
is also preferred in cases where the relation between the derived
property and the originally fitted parameters is complex, as in
the computation of RKR potential curves for diatomic mol-
ecules.10

Computational Methods

The partial derivatives required in eq 1 are evaluated
numerically. For accuracy, these are estimated centrally, e.g.,
for three parameters (â1 ) a, etc.)

In double precision arithmetic,∆a is usually set to 10-5-10-7

a. This numerical approach makes the use of eq 1 straightfor-
ward even in cases where the derivatives cannot be expressed
easily in closed form, e.g., in the aforementioned case of RKR
potential curve calculations.

The Monte Carlo (MC) calculations employed routines like
those described in the earlier works.7,8 For the error propagation
tests, the targeted quantitiesf were calculated using the results
of each MC fit and then were binned and statistically evaluated
along with the fit parameters.

The investigated models include (1) polynomial representa-
tions, linear through cubic, (2) an exponentially limiting function
of form a + b(1 - e-cx) (which is a special case of an
exponential plus a background), and (3) a spectral band
resolution model involving two Gaussian bands nearly coinci-
dent in wavelength. Model 1 is linear, so the parameters and
linear functions thereof are rigorously normal, as already noted.
These cases were used to validate the computational methods.
The second model is linear if the constantc is fixed, nonlinear
otherwise. The third is nonlinear unless the peak positions and

σf1

2 ) σa
2 + σb

2x2 + 2σab
2x (4a)

σf2

2 ) σa
2 + σb

2 ( 2σab
2 (4b)
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widths are fixed. Functions of the parameters that involve
products and ratios are nonlinear and yield nonnormal distribu-
tions for both linear and nonlinear LS parameters. In this
category are useful quantities such as the areas under the two
bands or the band area ratios and fractions in model 3.

To further illustrate how error propagation can be bypassed
by redefining the fit parameters, suppose that data are fitted to
a cubic polynomial,y ) b0 + b1x + b2x2 + b3x3, and that the
function f is the fit function itself. HeregT ) (1,x,x2,x3), andσf

at anyx ) x0 is readily obtained by numerical evaluation of
the matrix product in eq 1. Alternatively, an equivalent fit can
be obtained using the argumentz ) (x - x0). If the fit relation
is defined asy ) c0 + c1z + c2z2/2 + c3z3/6, the fit yields
directly the values and errors for the fit function and all its
derivatives atx0. This recentering method can also be used on
many nonlinear models, including model 2 above.

All of the LS fits studied in this work can be done with a
number of microcomputer data analysis programs; I have used
the KaleidaGraph program (Synergy Software).11 Such programs
do not normally include provision for evaluating eq 1, so the
user must either write a short macro for this calculation or be
able to define the desired quantity as a parameter in the fit.
Still, the latter approach works in many cases that might not
seem amenable to it at first thought. For example, the individual
band intensities, band areas, and band-area ratios in model 3
can be handled this way, as is discussed below.

Results and Discussion

Linear Models.
As already noted, linear LS models yield particularly simple

results and thus provide useful tests on the computational
procedures. The cubic model used in a recent study12 was
employed in these preliminary checks. It had eight data values
at x ) 1, 2, ..., 8 generated asy ) 1 + 5x + 0.01x2 - 0.025x3.
In all checks the four fit parameters and the functionsf(x) and
f′(x) were normally distributed, with variances as predicted.

Interestingly, these predictions of linear LS apply even for
fits to the wrong model. This statement holds not just for
“slightly” wrong models, such as omitting the statistically ill-
defined quadratic coefficient in the present cubic example, but
also for drastically wrong models, including fitting the cubic
data to a straight line. In all cases the parameters and derived
functions are distributed as predicted for the respective fits. This
result is at odds with naive anticipation. Of courseø2 for wrong-
model fits is systematically too large, being augmented by a
variance term for the model error.6 In the case of the straight-
line fit of the present cubic data, the increase amounts to 49%,
which is determined from a fit of the error-free data to a straight
line.

Figure 1 illustrates distributions for products and ratios of
the first two parameters in the cubic model. All of these are far
from normal but become closer to normal asσy is reduced from
0.5 to 0.1, as shown in Figure 2. The most anomalous dis-
tribution is that associated withf ) b1/b0, which exhibits
“reciprocal statistics,”7,8 indications of which persist even when
σy is reduced by the factor of 5. The reason this behavior is so
much more pronounced forb1/b0 than for its reciprocal is that
the relative error inb0 (σ1/â1) is much largers1.23 vs 0.223
for b1. Since the standard errors in the parameters scale with
σy, both ratios drop by a factor of 5 asσy is decreased from 0.5
to 0.1.

A Nonlinear Example: Exponentials.
A useful function for data that have a nonzero large-x

asymptotic limit is the formy ) a + b(1 - e-cx). As already

noted, this model becomes linear whenc is fixed, whereupon
linear functions ofa andb follow eq 1 rigorously. That includes
the fit function itself, as was readily verified through the MC
calculations.

Interestingly, whenc is included as an adjustable parameter,
the most nonnormal parameter isb, and it is much more
nonnormal that the fit function itself, as is illustrated in Figure
3. The asymmetry in the distribution ofb is even more
surprising, given that its relative standard error is only 4.3%
here. Its MC sampled error is 10% larger than predicted, in mild
violation of the “10% rule of thumb” stated earlier. The
discrepancy drops to 2.4% whenσy is reduced by a factor of 2,
indicating that the parameterb is exhibiting divergent sampling
statistics.7

Band Analysis Model.
The model of two nearly coincident Gaussian bands is

illustrated in Figure 4, with results summarized in Table 1. The
model was intentionally construed to yield large uncertainty in
the component bands, even though the total is precise to within
the width of the plotted curves. Calculations were done for two
error structures: constant and proportional error. (These two
mark the usual extremes in physical measurements.)

For both error structures the parameter distributions deviated
only modestly from normal, with one exception: The centroid
of the stronger component showed pronounced asymmetry, even
though its inherent imprecision is small (see Figure 5). All
parameters displayed biases that were statistically significant
from the standpoint of the MC determinations, in both weighting
schemes. These still amounted to at most∼10% of the
corresponding exact standard errors, so they would not be of
great practical import in an actual analysis. On the other hand,
the biases scale withσy

2 while the parameter errors scale with
σy,7 so a tripling of the data error would make the biases a more
significant 30% of the parameter errors. In this regard the smaller
biases for the weighted model in Table 1 are misleading: if
the data error is scaled to make each parameter error equal to
that in the unweighted analysis, the biases in the proportional-
error model exceed those in the constant-error model for four
of the six parameters.

Among the examined properties from the analysis were the
component band strengths at selectedx values, the band areas,

Figure 1. Histogrammed results of 105 Monte Carlo estimates of the
product and ratios of the first two parameters (the constant and linear
coefficients), as obtained from linear LS fits to the cubic model
described in text. The binning argumentX in this and subsequent
histogram plots is (f - ftrue)/σf. The error in the fitted data isσy ) 0.5;
the predicted relative errors (σf/f) are 1.02 (product) and 1.45 (ratios).
(The statistical errors in the counts are smaller than the plotted points
in this and subsequent figures.)
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band-area ratios, and fractional band area. Not surprisingly, all
of these displayed bias and nonnormality on a scale comparable
to that exhibited by the fit parameters themselves. Figure 6
shows that in the wings of the spectrum the two components
are quite nonnormal, with the skewness of the distributions
reflecting the anticorrelation of the components, needed to
preserve the precise total. Nonetheless, the sampled standard
errors are within 2% of predictions and the biases are moderate
(see Table 1).

Figure 7 displays results for the ratio of band areas. In this
case the distributions for the two error structures are quite
different, with both the asymmetry and bias being much smaller
for proportional error. Still, the MC standard errors are close to
the predicted values (Table 1), despite the large relative error

in this quantity. For comparison, the errors predicted by eq 2
are 30% too small in both cases.

All of the errors in derived properties obtained here via eq 1
can just as well be obtained directly from the fit through a
redefinition of the fit parameters. For example, if a component
band is defined as

the fit yields directly the amplitudeA of the band atx ) x1 and
its error. Thus one can generate complete error bands on the
components, as shown in Figure 4, by varyingx1 systematically
and rerunning the fit. Similarly, since the band-area ratioR )
(a2∆x2)/(a1∆x1), reexpressing the amplitude parameter for the
stronger band asR(a1∆x1)/∆x2 will yield directly Rand its error.

Applications.
Linear fitting is widely used in the construction of calibration

curves12 and in the empirical representation of data as functions

TABLE 1: Comparison of “Exact” and Monte Carlo Results for Band Analysis Model

biases and standard errorsb

unweightedc weightedd

parametera value biase σexact σMC
f biase σexact σMC

f

1 (a1) 300 5.1 66.35 65.5 3.8 39.32 40.0
2 (∆x1) 75 -0.089 1.7008 1.698 -0.013 1.3127 1.306
3 (x0,1) 520 0.018 0.4886 0.486 0.007 0.4689 0.469
4 (a2) 500 -5.1 66.41 65.6 -3.8 39.87 40.6
5 (∆x2) 90 0.126 1.0112 1.057 0.060 0.5104 0.534
6 (x0,2) 515 -0.058 0.4067 0.432 -0.021 0.1754 0.183
y1(440) 12.80 0.71 5.120 5.22 0.46 3.517 3.67
ratiog 2.000 0.113 0.7308 0.774 0.021 0.4447 0.443

a Two Gaussian bands:y(x) ) a exp[-4 ln 2((x - x0)/∆x)2]. Last two rows give derived quantities and their propagated errors.b 4 × 104 spectra
employed in Monte Carlo calculations.c σy ) 1.0. d σy ) y/100 andwi ) σyi

-2, evaluated using the true rather than the randomizedyi. e 〈â〉MC -
âtrue; errors) σMC/200. f Relative precision of MCσ values) (2N)-1/2 ) 0.0035.g (Band 2 area)/(band 1 area).

Figure 2. Results obtained as in Figure 1, but with the data error
reduced by a factor of 5, toσy ) 0.1. A unit-variance Gaussian is
included for comparison.

Figure 3. Results of 105 Monte Carlo estimates of the parameterb
and the fit functionf ) a + b(1 - e-cx) evaluated atx0 ) 8.5. The
model had true values of 1, 35, and 0.2 fora, b, andc, respectively,
with eight points atx ) 1, 2, ..., 8 andσy ) 0.5. The “exact” standard
errors forb and f(x0) are 1.488 and 0.451, respectively. Despite the
good visual agreement between the solid points and the Gaussian curve,
the weighted fit of these data fails a chi-square test (ø2 ) 90.2 for 28
degrees of freedom).

Figure 4. Band analysis model, showing component bands and their
errors (1σ), as calculated using eq 1 for the case of constant error (σy

) 1.0). Points were generated fromx ) 400 tox ) 630 at intervals of
2.0.

Figure 5. Results (histogram counts) of 4× 104 Monte Carlo estimates
of the centroids for the weak (open points) and strong component bands
in the constant-error model. Similar results were obtained for the
proportional-error model.

y(x) ) A exp{4 ln 2(∆x)-2[(x1 - x0)
2 - (x - x0)

2]} (10)
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of their independent variable, e.g., thermochemical and kinetics
data as functions of the temperatureT and spectroscopic
properties as functions of vibrational and rotational quantum
numbers. Sometimes it is the first derivative that is sought, for
example in the extraction of partial molar quantities for
solutions, or∆H from theT-dependence of equilibrium constants
or vapor pressures. Equation 1 is required for the proper
computation of errors in these cases, but often it can be avoided
by the recentering approach, or by some other redefinition of
the fit parameters. When abundant, very precise data are
involved, such fits may require many adjustable parameters.
These are normally highly correlated, so that the error bands
on the functions as correctly evaluated by eq 1 are invariably
much smaller than those obtained by the (incorrect) use of eq
2. For example, eq 2 gives a computed standard error a factor
of 48 too large atx0 ) 8 in the cubic model discussed above.

Traditionally physical scientists have preferred straight-line
relations for interpreting data, and linear fitting is often still
used in cases where the relations among the desired quantities
are nonlinear. Included in this category are equilibrium binding
constant data, some kinetics data (enzyme kinetics via the
Lineweaver-Burk equation, unimolecular conversion), and
adsorption data. For example, binding constant data can take
the form13

whereK is the binding constant,x the prepared concentration
of ligand, anda a scaling parameter. A nonlinear fit to eq 11
will yield directly K and its error,7 whereas a linear fit to the
relation

yieldsK asB/A and therefore requires eq 1 for proper assessment
of the error inK. Fits to eqs 11 and 12 will not yield identical
values ofK, because the data inversion process in eq 12 leads
to biased estimates.8 However, if this data bias is neglected (e.g.,
for error-free data), the (nonlinear) first form of eq 12 yields a
K identical with that obtained fromB/A, and also yields directly
a correct value ofσK.

Conclusion

Least-squares parameters are normally correlated, and in the
calculation of statistical errors in functions of the parameters,
this correlation must be taken into account. This is easily done
using the underutilized matrix expression of eq 1. In many cases
the same can be accomplished through a judicious definition
of the adjustable parameters in the least-squares model itself.
Monte Carlo calculations verify the expected normal distribu-
tions in linear functions of normal parameters but demonstrate
pronounced nonnormality in some nonlinear functions of the
parameters.

Even though nonlinear parameters and nonlinear functions
of linear parameters are not normally distributed, many cases
in practice are likely to fall under the validity of the 10% “rule
of thumb”:7 if the parameter or derived property has a standard
error less than 10% of its magnitude, its directly estimated error
(from V) or its propagated error (from eq 1) should prove
reliable for estimating confidence limits within 10%. In this
regard it should be noted that, in many cases, the data error is
not known at the outset and must be assessed from the fit itself.
This leads to a relative uncertainty of (2ν)-1/2 in the estimates
of the parameter standard errors, whereν is the number of
degrees of freedom in the fit. This uncertainty will often match
or exceed the errors in confidence limits stemming from the
Gaussian interpretation of non-Gaussian distributions.

Of course there is no way that the variance-covariance matrix
or eq 1 can convey any information about the extent of
deviations from normality in the distributions, so for cases where
these are of interest, the Monte Carlo method will remain
indispensable, as it will also for the assessment of bias.
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